logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Langevin And Fokkerplanck Equations And Their Generalizations Descriptions And Solutions Kwok

  • SKU: BELL-24607184
Langevin And Fokkerplanck Equations And Their Generalizations Descriptions And Solutions Kwok
$ 31.00 $ 45.00 (-31%)

4.0

96 reviews

Langevin And Fokkerplanck Equations And Their Generalizations Descriptions And Solutions Kwok instant download after payment.

Publisher: WSPC
File Extension: PDF
File size: 18.71 MB
Pages: 208
Author: Kwok, Sau Fa
ISBN: 9789813228405, 9813228407
Language: English
Year: 2018

Product desciption

Langevin And Fokkerplanck Equations And Their Generalizations Descriptions And Solutions Kwok by Kwok, Sau Fa 9789813228405, 9813228407 instant download after payment.

This invaluable book provides a broad introduction to a rapidly growing area of nonequilibrium statistical physics. The first part of the book complements the classical book on the Langevin and Fokker–Planck equations (H. Risken, The Fokker–Planck Equation: Methods of Solution and Applications (Springer, 1996)). Some topics and methods of solutions are presented and discussed in details which are not described in Risken's book, such as the method of similarity solution, the method of characteristics, transformation of diffusion processes into the Wiener process in different prescriptions, harmonic noise and relativistic Brownian motion. Connection between the Langevin equation and Tsallis distribution is also discussed. Due to the growing interest in the research on the generalized Langevin equations, several of them are presented. They are described with some details. Recent research on the integro-differential Fokker–Planck equation derived from the continuous time random walk model shows that the topic has several aspects to be explored. This equation is worked analytically for the linear force and the generic waiting time probability distribution function. Moreover, generalized Klein-Kramers equations are also presented and discussed. They have the potential to be applied to natural systems, such as biological systems. Contents: Introduction Langevin and Fokker–Planck Equations Fokker–Planck Equation for One Variable and its Solution Fokker–Planck Equation for Several Variables Generalized Langevin Equations Continuous Time Random Walk Model Uncoupled Continuous Time Random Walk Model andits Solution Readership: Advanced undergraduate and graduate students in mathematical physics and statistical physics; biologists and chemists who are interested in nonequilibrium statistical physics. Keywords: Langevin Equation;Fokker-Planck Equation;Klein-Kramers Equation;Continuous Time Random Walk Model;Colored Noise;Tsallis Entropy;Population Growth Models;Wright Functions;Mittag-Leffler Function;Method of Similarity Solution;First Passage Time;Relativistic Brownian Motion;Fractional Derivatives;Integro-Differential Fokker-Planck EquationsReview: Key Features: This book complements Risken's book on the Langevin and Fokker-Planck equations. Some topics and methods of solutions are presented and discussed in details which are not described in Risken's book Several generalized Langevin equations are presented and discussed with some detail Integro-differential Fokker–Planck equation is derived from the uncoupled continuous time random walk model for generic waiting time probability distribution function which can be used to distinguish the differences for the initial and intermediate times with the same behavior in the long-time limit. Moreover, generalized Klein–Kramers equations are also described and discussed. To our knowledge these approaches are not found in other textbooks

Related Products