logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Lattice Paths And Submonoids Of Z2 James East And Nicholas Ham

  • SKU: BELL-9983628
Lattice Paths And Submonoids Of Z2 James East And Nicholas Ham
$ 31.00 $ 45.00 (-31%)

4.1

20 reviews

Lattice Paths And Submonoids Of Z2 James East And Nicholas Ham instant download after payment.

Publisher: arXiv
File Extension: PDF
File size: 2.86 MB
Pages: 63
Author: James East and Nicholas Ham
Language: English
Year: 2018

Product desciption

Lattice Paths And Submonoids Of Z2 James East And Nicholas Ham by James East And Nicholas Ham instant download after payment.

We study a number of combinatorial and algebraic structures arising from walks on the two-dimensional integer lattice. To a given step set $X\sub\Z^2$, there are two naturally associated monoids: $\F_X$, the monoid of all $X$-walks/paths; and $\A_X$, the monoid of all endpoints of $X$-walks starting from the origin $O$. For each~${A\in\A_X}$, write $\pi_X(A)$ for the number of $X$-walks from $O$ to $A$. Calculating the numbers~$\pi_X(A)$ is a classical problem, leading to Fibonacci, Catalan, Motzkin, Delannoy and Schr\"oder numbers, among many other famous sequences and arrays. Our main results give the precise relationships between finiteness properties of the numbers $\pi_X(A)$, geometrical properties of the step set~$X$, algebraic properties of the monoid~$\A_X$, and combinatorial properties of a certain bi-labelled digraph naturally associated to $X$. There is an intriguing divergence between the cases of finite and infinite step sets, and some constructions rely on highly non-trivial properties of real numbers. We also consider the case of walks constrained to stay within a given region of the plane, and present a number of algorithms for computing the combinatorial data associated to finite step sets. Several examples are considered throughout to highlight the sometimes-subtle nature of the theoretical results.

Related Products