logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Linear And Nonlinear Optimization 1st Edition Richard W Cottle

  • SKU: BELL-5881066
Linear And Nonlinear Optimization 1st Edition Richard W Cottle
$ 31.00 $ 45.00 (-31%)

4.3

38 reviews

Linear And Nonlinear Optimization 1st Edition Richard W Cottle instant download after payment.

Publisher: Springer-Verlag New York
File Extension: PDF
File size: 10.13 MB
Pages: 644
Author: Richard W. Cottle, Mukund N. Thapa (auth.)
ISBN: 9781493970537, 9781493970551, 1493970534, 1493970550
Language: English
Year: 2017
Edition: 1

Product desciption

Linear And Nonlinear Optimization 1st Edition Richard W Cottle by Richard W. Cottle, Mukund N. Thapa (auth.) 9781493970537, 9781493970551, 1493970534, 1493970550 instant download after payment.

​This textbook on Linear and Nonlinear Optimization is intended for graduate and advanced undergraduate students in operations research and related fields. It is both literate and mathematically strong, yet requires no prior course in optimization. As suggested by its title, the book is divided into two parts covering in their individual chapters LP Models and Applications; Linear Equations and Inequalities; The Simplex Algorithm; Simplex Algorithm Continued; Duality and the Dual Simplex Algorithm; Postoptimality Analyses; Computational Considerations; Nonlinear (NLP) Models and Applications; Unconstrained Optimization; Descent Methods; Optimality Conditions; Problems with Linear Constraints; Problems with Nonlinear Constraints; Interior-Point Methods; and an Appendix covering Mathematical Concepts. Each chapter ends with a set of exercises.

The book is based on lecture notes the authors have used in numerous optimization courses the authors have taught at Stanford University. It emphasizes modeling and numerical algorithms for optimization with continuous (not integer) variables. The discussion presents the underlying theory without always focusing on formal mathematical proofs (which can be found in cited references). Another feature of this book is its inclusion of cultural and historical matters, most often appearing among the footnotes.


"This book is a real gem. The authors do a masterful job of rigorously presenting all of the relevant theory clearly and concisely while managing to avoid unnecessary tedious mathematical details. This is an ideal book for teaching a one or two semester masters-level course in optimization – it broadly covers linear and nonlinear programming effectively balancing modeling, algorithmic theory, computation, implementation, illuminating historical facts, and numerous interesting examples and exercises. Due to the clarity of the exposition, this book also serves as a valuable reference for self-study."
Professor Ilan Adler,
IEOR Department,
UC Berkeley

"A carefully crafted introduction to the main elements and applications of mathematical optimization. This volume presents the essential concepts of linear and nonlinear programming in an accessible format filled with anecdotes, examples, and exercises that bring the topic to life. The authors plumb their decades of experience in optimization to provide an enriching layer of historical context. Suitable for advanced undergraduates and masters students in management science, operations research, and related fields."

Michael P. Friedlander,
IBM Professor of Computer Science,
Professor of Mathematics,
University of British Columbia

Related Products