Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.7
96 reviewsThis book introduces and explores a variety of schemes designed to empower, enhance, and represent multi-institutional and multi-disciplinary ML/DL research in healthcare paradigms. Serving as a unique compendium of existing and emerging ML/DL paradigms for healthcare sector, it depth, breadth, complexity, and diversity of this multi-disciplinary area. This book provides a comprehensive overview of Machine Learning (ML) and Deep Learning (DL) algorithms and explores the related use cases in enterprises such as computer aided medical diagnostics, drug discovery and development, medical imaging, automation, robotic surgery, electronic smart records creation, outbreak prediction, medical image analysis, and radiation treatments. The book aims to endow different communities with their innovative advances in theory, analytical results, case studies, numerical simulation, modelling, and computational structuring in the field of ML/DL models for healthcare applications. This book will reveal different dimensions of ML/DL applications and will illustrate its use in the solution of assorted real world biomedical and healthcare problems. This book is a valuable source for information for researchers, scientists, healthcare professional, programmers and graduate-level students interested in understanding the applications of ML/DL in healthcare scenarios.