Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.0
36 reviewsEnterprises in traditional and emerging industries alike are increasingly turning to machine learning (ML) to maximize the value of their business data. But many of these teams are likely to experience significant hurdles and setbacks throughout the journey. In this practical ebook, data scientists and machine learning engineers explore six common challenges that teams face every day when creating, managing, and scaling ML applications.
For each problem, you’ll get hard-earned advice from Hussein Mehanna, AI engineering director for Google Cloud; Nakul Arora, VP of product management and marketing at Infosys; Patrick Hall, senior director for data science products at H2O; Matt Harrison, consultant and corporate trainer at MetaSnake; Joao Natali, data science director at Neustar; and Jerry Overton, data scientist and technology fellow at DXC.
Accomplished data scientist Piero Cinquegrana and Matheen Raza of Qubole examine ways to overcome challenges that include
Reconciling disparate interfaces
Resolving environment dependencies
Ensuring close collaboration among all ML stakeholders
Building or renting adequate ML infrastructure
Meeting the scalability needs of your application
Enabling smooth deployment of ML projects