logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Machine Learning Master Supervised And Unsupervised Learning Algorithms With Real Examples English Edition Doshi

  • SKU: BELL-34734256
Machine Learning Master Supervised And Unsupervised Learning Algorithms With Real Examples English Edition Doshi
$ 31.00 $ 45.00 (-31%)

5.0

38 reviews

Machine Learning Master Supervised And Unsupervised Learning Algorithms With Real Examples English Edition Doshi instant download after payment.

Publisher: BPB Publications
File Extension: PDF
File size: 6.32 MB
Pages: 294
Author: Doshi, Dr Ruchi, Hiran, Dr Kamal Kant, Jain, Ritesh Kumar, Lakhwani, Dr Kamlesh
ISBN: 9789391392352, 9391392350
Language: English
Year: 2021

Product desciption

Machine Learning Master Supervised And Unsupervised Learning Algorithms With Real Examples English Edition Doshi by Doshi, Dr Ruchi, Hiran, Dr Kamal Kant, Jain, Ritesh Kumar, Lakhwani, Dr Kamlesh 9789391392352, 9391392350 instant download after payment.

Concepts of Machine Learning with Practical Approaches.

Key Features

● Includes real-scenario examples to explain the working of Machine Learning algorithms.

● Includes graphical and statistical representation to simplify modeling Machine Learning and Neural Networks.

● Full of Python codes, numerous exercises, and model question papers for data science students.

Description

The book offers the readers the fundamental concepts of Machine Learning techniques in a user-friendly language. The book aims to give in-depth knowledge of the different Machine Learning (ML) algorithms and the practical implementation of the various ML approaches.

This book covers different Supervised Machine Learning algorithms such as Linear Regression Model, Naïve Bayes classifier Decision Tree, K-nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithms, Unsupervised Machine Learning algorithms such as k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model and Reinforcement Learning algorithm such as Markov Decision Process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA). It also includes various feature extraction and feature selection techniques, the Recommender System, and a brief overview of Deep Learning.

What you will learn

● Perform feature extraction and feature selection techniques.

● Learn to select the best Machine Learning algorithm for a given problem.

● Get a stronghold in using popular Python libraries like Scikit-learn, pandas, and matplotlib.

● Practice how to implement different types of Machine Learning techniques.

Who this book is for

This book is designed for data science and analytics students, academicians, and researchers who want to explore the concepts of machine learning and practice the understanding of real cases. Knowing basic statistical and programming concepts would be good, although not mandatory.

Table of Contents

1. Introduction

2. Supervised Learning Algorithms

3. Unsupervised Learning

4. Introduction to the Statistical Learning Theory

5. Semi-Supervised Learning and Reinforcement Learning

6. Recommended Systems

About the Authors

Dr Ruchi Doshi has more than 14 years of academic, research, and software development experience in Asia and Africa. Currently, she is working as a research supervisor at the Azteca University, Mexico, and as an adjunct faculty at the Jyoti Vidyapeeth Women’s University, Jaipur, Rajasthan, India.


Kamal Kant Hiran works as an Assistant Professor, School of Engineering at the Sir Padampat Singhania University (SPSU), Udaipur, Rajasthan, India as well as a Research Fellow at the Aalborg University, Copenhagen, Denmark. He is a Gold Medalist in M.Tech. (Hons.). He has more than 16 years of experience as an academic and researcher in Asia, Africa, and Europe.

Ritesh Kumar Jain works as an Assistant Professor, at the Geetanjali Institute of Technical Studies, (GITS), Udaipur, Rajasthan, India. He has more than 15 years of teaching and research experience.

Dr. Kamlesh Lakhwani works as an Associate Professor, in Computer Science & Engineering at JECRC University Jaipur, Rajasthan, India. He has an excellent academic background and a rich experience of 15 years as an academician and researcher in Asia.

Related Products