logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Machine Learning Systems Designs That Scale Jeff Smith

  • SKU: BELL-7408988
Machine Learning Systems Designs That Scale Jeff Smith
$ 31.00 $ 45.00 (-31%)

4.1

100 reviews

Machine Learning Systems Designs That Scale Jeff Smith instant download after payment.

Publisher: Manning Publications
File Extension: PDF
File size: 5.76 MB
Pages: 224
Author: Jeff Smith
ISBN: 9781617293337, 1617293334
Language: English
Year: 2017

Product desciption

Machine Learning Systems Designs That Scale Jeff Smith by Jeff Smith 9781617293337, 1617293334 instant download after payment.

Summary

Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app.

Foreword by Sean Owen, Director of Data Science, Cloudera

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

If you're building machine learning models to be used on a small scale, you don't need this book. But if you're a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users.

About the Book

Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You'll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java, as well.

What's Inside

  • Working with Spark, MLlib, and Akka
  • Reactive design patterns
  • Monitoring and maintaining a large-scale system
  • Futures, actors, and supervision

About the Reader

Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed.

About the Author

Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications, teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https://medium.com/@jeffksmithjr), tweets (@jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems.

Table of Contents

PART 1 - FUNDAMENTALS OF REACTIVE MACHINE LEARNING
  1. Learning reactive machine learning
  2. Using reactive tools
PART 2 - BUILDING A REACTIVE MACHINE LEARNING SYSTEM
  1. Collecting data
  2. Generating features
  3. Learning models
  4. Evaluating models
  5. Publishing models
  6. Responding
PART 3 - OPERATING A MACHINE LEARNING SYSTEM
  1. Delivering
  2. Evolving intelligence

Related Products