logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Magnetic Resonance Imaging The Basics Constantinides Christakis

  • SKU: BELL-5066706
Magnetic Resonance Imaging The Basics Constantinides Christakis
$ 31.00 $ 45.00 (-31%)

4.3

58 reviews

Magnetic Resonance Imaging The Basics Constantinides Christakis instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 3.9 MB
Pages: 235
Author: Constantinides, Christakis
ISBN: 9781482217315, 1482217317
Language: English
Year: 2014

Product desciption

Magnetic Resonance Imaging The Basics Constantinides Christakis by Constantinides, Christakis 9781482217315, 1482217317 instant download after payment.

"Preface Book Synopsis Magnetic resonance imaging (MRI) is a rapidly developing field in basic, applied science and clinical practice. Research efforts in this field have already been recognized with five Nobel prizes, awarded to seven Nobel laureates during the last 69 years. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It proceeds to examine the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction. To this extent, there is a detailed reference to the mathematical formulation of MRI using the imaging equation, description of the relaxation parameters T1 and T2, and reference to specific pulse sequences and data acquisition schemes. Additionally, numerous image quantitative indices are presented, including signal, noise, signal-to-noise, contrast, and resolution. The second part of the book discusses the hardware and electronics of an MRI scanner, the typical measurements and simulations of magnetic fields based on the law of Biot-Savart, followed by an introduction to NMR spectroscopy, and to dedicated spectral techniques employing various pulse sequences. The third part discusses advanced imaging techniques. While the list may contain numerous modern applications, including cardiac MR, coronary and peripheral angiography, flow, diffusion, and functional MRI (fMRI), the focus is maintained on parallel imaging. The book is enriched with numerous worked examples and problem sets with selected solutions. Nobel Prizes in Magnetic Resonance Magnetic resonance imaging is a field that emerged right after the Second World War, as a result of experimental work that was initiated initially for spectroscopy"--Provided by publisher.
Abstract: "Preface Book Synopsis Magnetic resonance imaging (MRI) is a rapidly developing field in basic, applied science and clinical practice. Research efforts in this field have already been recognized with five Nobel prizes, awarded to seven Nobel laureates during the last 69 years. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It proceeds to examine the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction. To this extent, there is a detailed reference to the mathematical formulation of MRI using the imaging equation, description of the relaxation parameters T1 and T2, and reference to specific pulse sequences and data acquisition schemes. Additionally, numerous image quantitative indices are presented, including signal, noise, signal-to-noise, contrast, and resolution. The second part of the book discusses the hardware and electronics of an MRI scanner, the typical measurements and simulations of magnetic fields based on the law of Biot-Savart, followed by an introduction to NMR spectroscopy, and to dedicated spectral techniques employing various pulse sequences. The third part discusses advanced imaging techniques. While the list may contain numerous modern applications, including cardiac MR, coronary and peripheral angiography, flow, diffusion, and functional MRI (fMRI), the focus is maintained on parallel imaging. The book is enriched with numerous worked examples and problem sets with selected solutions. Nobel Prizes in Magnetic Resonance Magnetic resonance imaging is a field that emerged right after the Second World War, as a result of experimental work that was initiated initially for spectroscopy"--Provided by publisher

Related Products