logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Materials Kinetics John C Mauro

  • SKU: BELL-51828498
Materials Kinetics John C Mauro
$ 31.00 $ 45.00 (-31%)

5.0

60 reviews

Materials Kinetics John C Mauro instant download after payment.

Publisher: Elsevier
File Extension: PDF
File size: 9.69 MB
Author: John C. Mauro
ISBN: 9780128239070, 0128239077
Language: English
Year: 2021

Product desciption

Materials Kinetics John C Mauro by John C. Mauro 9780128239070, 0128239077 instant download after payment.

Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick’s laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials.
Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations.

Related Products