logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Mathematics A Minimal Introduction Onlineausg Buium Alexandru

  • SKU: BELL-5101456
Mathematics A Minimal Introduction Onlineausg Buium Alexandru
$ 31.00 $ 45.00 (-31%)

5.0

38 reviews

Mathematics A Minimal Introduction Onlineausg Buium Alexandru instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 1.45 MB
Pages: 226
Author: Buium, Alexandru
ISBN: 9781482216011, 1482216019
Language: English
Year: 2013
Edition: Online-Ausg

Product desciption

Mathematics A Minimal Introduction Onlineausg Buium Alexandru by Buium, Alexandru 9781482216011, 1482216019 instant download after payment.

Front Cover; Contents; Preface; Introduction; Part 1. Pre-mathematical logic; Chapter 1. Languages; Chapter 2. Metalanguage; Chapter 3. Syntax; Chapter 4. Semantics; Chapter 5. Tautologies; Chapter 6. Witnesses; Chapter 7. Theories; Chapter 8. Proofs; Chapter 9. Argot; Chapter 10. Strategies; Chapter 11. Examples; Part 2. Mathematics; Chapter 12. ZFC; Chapter 13. Sets; Chapter 14. Maps; Chapter 15. Relations; Chapter 16. Operations; Chapter 17. Integers; Chapter 18. Induction; Chapter 19. Rationals; Chapter 20. Combinatorics; Chapter 21. Sequences; Chapter 22. Reals; Chapter 23. Topology.

Chapter 24. ImaginariesChapter 25. Residues; Chapter 26. p-adics; Chapter 27. Groups; Chapter 28. Orders; Chapter 29. Vectors; Chapter 30. Matrices; Chapter 31. Determinants; Chapter 32. Polynomials; Chapter 33. Congruences; Chapter 34. Lines; Chapter 35. Conics; Chapter 36. Cubics; Chapter 37. Limits; Chapter 38. Series; Chapter 39. Trigonometry; Chapter 40. Integrality; Chapter 41. Reciprocity; Chapter 42. Calculus; Chapter 43. Metamodels; Chapter 44. Categories; Chapter 45. Functors; Chapter 46. Objectives; Part 3. Mathematical logic; Chapter 47. Models; Chapter 48. Incompleteness.

Pre-Mathematical Logic Languages Metalanguage Syntax Semantics Tautologies Witnesses Theories Proofs Argot Strategies Examples Mathematics ZFC Sets Maps Relations Operations Integers Induction Rationals Combinatorics Sequences Reals Topology Imaginaries Residues p-adics Groups Orders Vectors Matrices Determinants Polynomials Congruences Lines Conics Cubics Limits Series Trigonometry Integrality Reciprocity Calculus Metamodels Categories Functors Objectives Mathematical Logic Models Incompleteness Bibliography Index.
Abstract: Front Cover; Contents; Preface; Introduction; Part 1. Pre-mathematical logic; Chapter 1. Languages; Chapter 2. Metalanguage; Chapter 3. Syntax; Chapter 4. Semantics; Chapter 5. Tautologies; Chapter 6. Witnesses; Chapter 7. Theories; Chapter 8. Proofs; Chapter 9. Argot; Chapter 10. Strategies; Chapter 11. Examples; Part 2. Mathematics; Chapter 12. ZFC; Chapter 13. Sets; Chapter 14. Maps; Chapter 15. Relations; Chapter 16. Operations; Chapter 17. Integers; Chapter 18. Induction; Chapter 19. Rationals; Chapter 20. Combinatorics; Chapter 21. Sequences; Chapter 22. Reals; Chapter 23. Topology.

Chapter 24. ImaginariesChapter 25. Residues; Chapter 26. p-adics; Chapter 27. Groups; Chapter 28. Orders; Chapter 29. Vectors; Chapter 30. Matrices; Chapter 31. Determinants; Chapter 32. Polynomials; Chapter 33. Congruences; Chapter 34. Lines; Chapter 35. Conics; Chapter 36. Cubics; Chapter 37. Limits; Chapter 38. Series; Chapter 39. Trigonometry; Chapter 40. Integrality; Chapter 41. Reciprocity; Chapter 42. Calculus; Chapter 43. Metamodels; Chapter 44. Categories; Chapter 45. Functors; Chapter 46. Objectives; Part 3. Mathematical logic; Chapter 47. Models; Chapter 48. Incompleteness.

Pre-Mathematical Logic Languages Metalanguage Syntax Semantics Tautologies Witnesses Theories Proofs Argot Strategies Examples Mathematics ZFC Sets Maps Relations Operations Integers Induction Rationals Combinatorics Sequences Reals Topology Imaginaries Residues p-adics Groups Orders Vectors Matrices Determinants Polynomials Congruences Lines Conics Cubics Limits Series Trigonometry Integrality Reciprocity Calculus Metamodels Categories Functors Objectives Mathematical Logic Models Incompleteness Bibliography Index

Related Products