logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Modern Aerodynamic Methods For Direct And Inverse Applications Chin

  • SKU: BELL-21979944
Modern Aerodynamic Methods For Direct And Inverse Applications Chin
$ 31.00 $ 45.00 (-31%)

4.0

76 reviews

Modern Aerodynamic Methods For Direct And Inverse Applications Chin instant download after payment.

Publisher: Wiley-Scrivener; John Wiley & Sons
File Extension: PDF
File size: 7.77 MB
Author: Chin, Wilson C
ISBN: 9781119580560, 9781821821838, 1119580560, 1821821831
Language: English
Year: 2019

Product desciption

Modern Aerodynamic Methods For Direct And Inverse Applications Chin by Chin, Wilson C 9781119580560, 9781821821838, 1119580560, 1821821831 instant download after payment.

Just when classic subject areas seem understood, the author, a Caltech, M.I.T. and Boeing trained aerodynamicist, raises profound questions over traditional formulations. Can shear flows be rigorously modeled using simpler "potential-like" methods versus Euler equation approaches? Why not solve aerodynamic inverse problems using rapid, direct or forward methods similar to those used to calculate pressures over specified airfoils? Can transonic supercritical flows be solved rigorously without type-differencing methods? How do oscillations affect transonic mean flows, which in turn influence oscillatory effects? Or how do hydrodynamic disturbances stabilize or destabilize mean shear flows? Is there an exact approach to calculating wave drag for modern supersonic aircraft?
This new book, by a prolific fluid-dynamicist and mathematician who has published more than twenty research monographs, represents not just another contribution to aerodynamics, but a book that raises serious questions about traditionally accepted approaches and formulations - and provides new methods that solve longstanding problems of importance to the industry. While both conventional and newer ideas are discussed, the presentations are readable and geared to advanced undergraduates with exposure to elementary differential equations and introductory aerodynamics principles. Readers are introduced to fundamental algorithms (with Fortran source code) for basic applications, such as subsonic lifting airfoils, transonic supercritical flows utilizing mixed differencing, models for inviscid shear flow aerodynamics, and so on - models they can extend to include newer effects developed in the second half of the book. Many of the newer methods have appeared over the years in various journals and are now presented with deeper perspective and integration.
This book helps readers approach the literature more critically. Rather than simply understanding an approach, for instance, the powerful "type differencing" behind transonic analysis, or the rationale behind "conservative" formulations, or the use of Euler equation methods for shear flow analysis when they are unnecessary, the author guides and motivates the user to ask why and why not and what if. And often, more powerful methods can be developed using no more than simple mathematical manipulations. For example, Cauchy-Riemann conditions, which are powerful tools in subsonic airfoil theory, can be readily extended to handle compressible flows with shocks, rotational flows, and even three-dimensional wing flowfields, in a variety of applications, to produce powerful formulations that address very difficult problems. This breakthrough volume is certainly a "must have" on every engineer's bookshelf.

Related Products