logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Monotone Nonautonomous Dynamical Systems David Cheban

  • SKU: BELL-58472034
Monotone Nonautonomous Dynamical Systems David Cheban
$ 31.00 $ 45.00 (-31%)

4.7

26 reviews

Monotone Nonautonomous Dynamical Systems David Cheban instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 12.63 MB
Pages: 475
Author: David Cheban
ISBN: 9783031600562, 9783031600579, 3031600568, 3031600576
Language: English
Year: 2024

Product desciption

Monotone Nonautonomous Dynamical Systems David Cheban by David Cheban 9783031600562, 9783031600579, 3031600568, 3031600576 instant download after payment.

The monograph present ideas and methods, developed by the author, to solve the problem of existence of Bohr/Levitan almost periodic (respectively, almost recurrent in the sense of Bebutov, almost authomorphic, Poisson stable) solutions and global attractors of monotone nonautonomous differential/difference equations. Namely, the text provides answers to the following problems: 1. Problem of existence of at least one Bohr/Levitan almost periodic solution for cooperative almost periodic differential/difference equations; 2. Problem of existence of at least one Bohr/Levitan almost periodic solution for uniformly stable and dissipative monotone differential equations (I. U. Bronshtein’s conjecture, 1975); 3. Problem of description of the structure of the global attractor for monotone nonautonomous dynamical systems; 4. The structure of the invariant/minimal sets and global attractors for one-dimensional monotone nonautonomous dynamical systems; 5. Asymptotic behavior of monotone nonautonomous dynamical systems with a first integral (Poisson stable motions, convergence, asymptotically Poisson stable motions and structure of the Levinson center (compact global attractor) of dissipative systems); 6. Existence and convergence to Poisson stable motions of monotone sub-linear nonautonomous dynamical systems. This book will be interesting to the mathematical community working in the field of nonautonomous dynamical systems and their applications (population dynamics, oscillation theory, ecology, epidemiology, economics, biochemistry etc). The book should be accessible to graduate and PhD students who took courses in real analysis (including the elements of functional analysis, general topology) and with general background in dynamical systems and qualitative theory of differential/difference equations.

Related Products