logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Multiscale Methods Bridging The Scales In Science And Engineering Jacob Fish

  • SKU: BELL-1405796
Multiscale Methods Bridging The Scales In Science And Engineering Jacob Fish
$ 31.00 $ 45.00 (-31%)

5.0

108 reviews

Multiscale Methods Bridging The Scales In Science And Engineering Jacob Fish instant download after payment.

Publisher: Oxford University Press, USA
File Extension: PDF
File size: 14.09 MB
Pages: 631
Author: Jacob Fish
ISBN: 9780199233854, 0199233853
Language: English
Year: 2009

Product desciption

Multiscale Methods Bridging The Scales In Science And Engineering Jacob Fish by Jacob Fish 9780199233854, 0199233853 instant download after payment.

Small scale features and processes occurring at a nanometer and femtoseconds scales have a profound impact on what happens at a larger scale and over extensive period of time. The primary objective of this volume is to reflect the-state-of-the art in multiscale mathematics, modeling and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during the transfer of information? What are the optimal ways to achieve such transfer of information? How to quantify variability of physical parameters at multiple scales and how to account for it to ensure design robustness? Various multiscale approaches in space and time presented in this Volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches, various scales are simultaneously resolved, whereas in the information-passing methods, the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools is discussed in several, which focus on hierarchy of multiscale models and a posterior model error estimation including uncertainty quantification. Component software that can be effectively combined to address a wide range of multiscale simulations is described as well. Applications range from advanced materials, to nanoelectromechanical systems (NEMS), to biological systems, and nanoporous catalysts where physical phenomena operate across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales. A valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.

Related Products