Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
0.0
0 reviewsNaïve Set Theory: A Rigorous Approach aims to provide a complete and unitary presentation of naive set theory as the foundation of the whole mathematics. Suitable for undergraduate students, this book focuses on the main foundational issues, trying to clarify explicitly what is (necessarily) assumed as intuitively known and what is rigorously founded on more elementary concepts. It analyses in detail the nature of natural numbers, both as meta-theoretical objects and through their set-theoretical model. The author also pays particular attention to some topics that are not usually covered by the literature on naive set theory, like the universal properties of Cartesian product and disjoint union, that lead to a precise formulation of their basic features (associativity, commutativity, and distributivity). The exposition is organized coherently from the initial metatheoretical notions to the construction of the universe of well-founded sets. Features: • Replete with exercises, partially spread within the text and partially listed at the end of each chapter with a solutions manual available on www.Routledge.com/9781032933047 • Covers foundational topics that are not usually discussed in the literature on naive set theory, such as universal properties of Cartesian product and disjoint union, through which one can properly state associativity, commutativity, and distributivity of these operations