Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.7
96 reviewsDiscover the use of graph networks to develop a new approach to data science using theoretical and practical methods with this expert guide using Python, printed in color
Key Features
• Create networks using data points and information
• Learn to visualize and analyze networks to better understand communities
• Explore the use of network data in both - supervised and unsupervised machine learning projects
Book Description
Network analysis is often taught with tiny or toy data sets, leaving you with a limited scope of learning and practical usage. Network Science with Python helps you extract relevant data, draw conclusions and build networks using industry-standard – practical data sets. You’ll begin by learning the basics of natural language processing, network science, and social network analysis, then move on to programmatically building and analyzing networks. You’ll get a hands-on understanding of the data source, data extraction, interaction with it, and drawing insights from it. This is a hands-on book with theory grounding, specific technical, and mathematical details for future reference. As you progress, you’ll learn to construct and clean networks, conduct network analysis, egocentric network analysis, community detection, and use network data with machine learning. You’ll also explore network analysis concepts, from basics to an advanced level.
By the end of the book, you’ll be able to identify network data and use it to extract unconventional insights to comprehend the complex world around you.
What you will learn
• Explore NLP, network science, and social network analysis
• Apply the tech stack used for NLP, network science, and analysis
• Extract insights from NLP and network data
• Generate personalized NLP and network projects
• Authenticate and scrape tweets, connections, the web, and data streams
• Discover the use of network data in machine learning projects
Who this book is for
Data scientists, NLP engineers, software engineers, social scienti