logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Nonlinear Filters Theory And Applications Peyman Setoodeh Saeid Habibi

  • SKU: BELL-46897012
Nonlinear Filters Theory And Applications Peyman Setoodeh Saeid Habibi
$ 31.00 $ 45.00 (-31%)

4.8

14 reviews

Nonlinear Filters Theory And Applications Peyman Setoodeh Saeid Habibi instant download after payment.

Publisher: Wiley
File Extension: PDF
File size: 3.13 MB
Pages: 305
Author: Peyman Setoodeh, Saeid Habibi, Simon Haykin
ISBN: 9781118835814, 1118835816
Language: English
Year: 2022

Product desciption

Nonlinear Filters Theory And Applications Peyman Setoodeh Saeid Habibi by Peyman Setoodeh, Saeid Habibi, Simon Haykin 9781118835814, 1118835816 instant download after payment.

NONLINEAR FILTERS

Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource

Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms.

Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy:

  • Organization that allows the book to act as a stand-alone, self-contained reference
  • A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines
  • A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter
  • A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values
  • A concise tutorial on deep learning and reinforcement learning
  • A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation
  • Guidelines for constructing nonparametric Bayesian models from parametric ones

Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.

Related Products