logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Numerical Simulation Of Premixed Turbulent Combustion Based On A Level Set Flamelet Model Marcus Herrmann

  • SKU: BELL-991400
Numerical Simulation Of Premixed Turbulent Combustion Based On A Level Set Flamelet Model Marcus Herrmann
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Numerical Simulation Of Premixed Turbulent Combustion Based On A Level Set Flamelet Model Marcus Herrmann instant download after payment.

Publisher: Shaker Verlag GmbH, Germany
File Extension: PDF
File size: 12.19 MB
Pages: 90
Author: Marcus Herrmann
ISBN: 9783826593628, 3826593626
Language: English
Year: 2001

Product desciption

Numerical Simulation Of Premixed Turbulent Combustion Based On A Level Set Flamelet Model Marcus Herrmann by Marcus Herrmann 9783826593628, 3826593626 instant download after payment.

Turbulent prcmixcd combustion occurs in a wide variety of technical applications. To achieve a profound understanding of the relevant physical and chemical processes involved and to enhance the predictability of these processes, a level set flamclct model for prcmixcd turbulent combustion is presented in this work. As a turbulent combustion model is ultimately aimed at the design process, numerical simulations should give results in relatively fast turnover times without sacrificing physical accuracy.An initial analysis shows that the technically relevant turbulent prcmixcd combustion processes occur almost exclusively within the so-called corrugated flamclct and thin reaction zone regime. In these regimes, the relevant chemical time and length scales arc smaller than the respective turbulent time and length scales. This implies that the important chemical reactions take place in thin, locally one-dimensional laminar layers, the so-called flamclcts, embedded in an otherwise inert turbulent flow field. Hence, assuming scale separation of chemical and turbulent scales, the calculation of the chemistry can be decoupled from the calculation of the turbulent flow field. In practice, the chemical structure of the instantaneous prcmixcd flames is solved in a pre-processing step and then stored in so-called flamclct libraries. Since the chemical time and length scales need no longer be resolved in the subsequent turbulent combustion simulation, the numerical effort is greatly reduced, thus allowing for the calculation of complex reacting flows, even within the scope of an engineering framework. The effect of combustion on the turbulent flow field is then accounted for by reattaching an ensemble average of the previously calculated flamclcts to the mean flame front location with the help of a presumed shape probability density function approach. The position of the propagating mean flame front in the turbulent flow field is defined by a level set iso-scalar surface whose motion is described by the mean level set transport equation. This implies that the turbulent burning velocity is a well defined quantity. It can be calculated from cither an algebraic equation directly or via the solution of the differential equation for the flame surface area ratio.

Related Products