logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Optimal Fractionalorder Predictive Pi Controllers For Process Control Applications With Additional Filtering Arun Mozhi Devan Panneer Selvam

  • SKU: BELL-47057542
Optimal Fractionalorder Predictive Pi Controllers For Process Control Applications With Additional Filtering Arun Mozhi Devan Panneer Selvam
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Optimal Fractionalorder Predictive Pi Controllers For Process Control Applications With Additional Filtering Arun Mozhi Devan Panneer Selvam instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 12.52 MB
Pages: 155
Author: Arun Mozhi Devan Panneer Selvam, Fawnizu Azmadi Hussin, Rosdiazli Ibrahim, Kishore Bingi, Nagarajapandian M.
ISBN: 9789811965166, 9811965161
Language: English
Year: 2022

Product desciption

Optimal Fractionalorder Predictive Pi Controllers For Process Control Applications With Additional Filtering Arun Mozhi Devan Panneer Selvam by Arun Mozhi Devan Panneer Selvam, Fawnizu Azmadi Hussin, Rosdiazli Ibrahim, Kishore Bingi, Nagarajapandian M. 9789811965166, 9811965161 instant download after payment.

This book presents the study to design, develop, and implement improved PI control techniques using dead-time compensation, structure enhancements, learning functions and fractional ordering parameters. Two fractional-order PI controllers are proposed and designed: fractional-order predictive PI and hybrid iterative learning based fractional-order predictive PI controller. Furthermore, the proposed fractional-order control strategies and filters are simulated over first- and second-order benchmark process models and further validated using the real-time experimentation of the pilot pressure process plant. 

In this book, five chapters are structured with a proper sequential flow of details to provide a better understanding for the readers. A general introduction to the controllers, filters and optimization techniques is presented in Chapter 1. Reviews of the PI controllers family and their modifications are shown in the initial part of Chapter 2, followed by the development of the proposed fractional-order predictive PI (FOPPI) controller with dead-time compensation ability. In the first part of chapter 3, a review of the PI based iterative learning controllers, modified structures of the ILC and their modifications are presented. Then, the design of the proposed hybrid iterative learning controller-based fractional-order predictive PI  controller based on the current cyclic feedback structure is presented. Lastly, the results and discussion of the proposed controller on benchmark process models and the real-time experimentation of the pilot pressure process plant are given. Chapter 4 presents the development of the proposed filtering techniques and their performance comparison with the conventional methods. Chapter 5 proposes the improvement of the existing sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to form a novel arithmetic-trigonometric optimization algorithm (ATOA) to accelerate the rate of convergence in lesser iterations with mitigation towards getting caught in the same local position. The performance analysis of the optimization algorithm will be carried out on benchmark test functions and the real-time pressure process plant.


Related Products