Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
5.0
70 reviewsOriginally published in 1995, the text remains timely and useful to a wide audience. It provides a thorough introduction to ODEs, since it treats not only standard aspects such as existence, uniqueness, stability, one-step methods, multistep methods, and singular perturbations, but also chaotic systems, differential-algebraic systems, and boundary value problems. The authors aim to show the use of ODEs in real life problems, so there is an extended chapter in which not only the general concepts of mathematical modeling but also illustrative examples from various fields are presented. A chapter on classical mechanics makes the book self-contained.
Audience The book is intended as a textbook for both undergraduate and graduate courses, and it can also serve as a reference for students and researchers alike.
Contents Preface to the Classics Edition; Preface; Chapter 1: Introduction; Chapter 2: Existence, Uniqueness, and Dependence on Parameters; Chapter 3: Numerical Analysis of One-Step Methods; Chapter 4: Linear Systems; Chapter 5: Stability; Chapter 6: Chaotic Systems; Chapter 7: Numerical Analysis of Multistep Methods; Chapter 8: Singular Perturbations and Stiff Differential Equations; Chapter 9: Differential-Algebraic Equations; Chapter 10: Boundary Value Problems; Chapter 11: Concepts from Classical Mechanics; Chapter 12: Mathematical Modelling; Appendices; References; Index.