logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Organic Lightemitting Devices 1st Edition Joseph Shinar

  • SKU: BELL-1411700
Organic Lightemitting Devices 1st Edition Joseph Shinar
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Organic Lightemitting Devices 1st Edition Joseph Shinar instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 4.17 MB
Pages: 313
Author: Joseph Shinar
ISBN: 9780387953434, 0387953434
Language: English
Year: 2003
Edition: 1

Product desciption

Organic Lightemitting Devices 1st Edition Joseph Shinar by Joseph Shinar 9780387953434, 0387953434 instant download after payment.

Although it has long been possible to make organic materials emit light, it has only recently become possible to do so at the level and with the efficiency and control necessary to make the materials a useful basis for illumination or displays. The early electroluminescent devices provided reasonably bright light, but required high operating voltages, produced only a narrow range of colors, and had severely limited lifetimes. Recent developments, however, make it possible to manufacture organic light-emitting devices that are thin, bright, efficient, and stable and that produce a broad range of colors. This book surveys the current status of the field. It begins with an overview of the physics and chemistry of organic light emitting devices by J. Shinar and V. Savvateev. Subsequenbt chapters discuss the design of molecular materials for high performance devices (C. Adachi and T. Tsutsui) and chemical degradation and physical aging (K. Higginson, D. L. Thomsen, B. Yang, and F. Papadimitrakopoulos). A. Dodabalapur describes microcavity OLEDs, and Y. Shi, J. Liu, and Y. Yang discuss polymer morphology and device performance. Various aspects of devices based on polyparaphenylene vinylenes are discussed in chapters by N.C. Greenham and R.H. Friend and by H. Chayet, V. Savvateeyv, D. Davidov and R. Neumann. Chapters by S. Tasch, W. Graupner, and G. Leising and by Y. Z. Wang, D. Gebler, and A. J. Epstein describe OLEDs based on poly(paraphenylene) and poly(pyridine), respectively. The book concludes with a chapter on polyfluorene-based devices, which show great promise for producing light in all colors from blue to red.

Related Products