logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Organic Solar Cells Theory Experiment And Device Simulation 1st Edition Wolfgang Tress Auth

  • SKU: BELL-4972702
Organic Solar Cells Theory Experiment And Device Simulation 1st Edition Wolfgang Tress Auth
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Organic Solar Cells Theory Experiment And Device Simulation 1st Edition Wolfgang Tress Auth instant download after payment.

Publisher: Springer International Publishing
File Extension: PDF
File size: 19.21 MB
Pages: 464
Author: Wolfgang Tress (auth.)
ISBN: 9783319100968, 3319100963
Language: English
Year: 2014
Edition: 1

Product desciption

Organic Solar Cells Theory Experiment And Device Simulation 1st Edition Wolfgang Tress Auth by Wolfgang Tress (auth.) 9783319100968, 3319100963 instant download after payment.

This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author’s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general.

The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve.

This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.

Related Products