Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.4
12 reviewsMathematics Subject Classification: • 22E50 Representations of Lie and linear algebraic groups over local fields • 20G25 Linear algebraic groups over local fields and their integers • 11F70 Representation-theoretic methods; automorphic representations over local and global fields • 11F85 p-adic theory, local fields • 46S10 Functional analysis over fields other than R or C or the quaternions; non-Archimedean functional analysis
This book systematically develops the theory of continuous representations on p-adic Banach spaces. Its purpose is to lay the foundations of the representation theory of reductive p-adic groups on p-adic Banach spaces, explain the duality theory of Schneider and Teitelbaum, and demonstrate its applications to continuous principal series. Written to be accessible to graduate students, the book gives a comprehensive introduction to the necessary tools, including Iwasawa algebras, p-adic measures and distributions, p-adic functional analysis, reductive groups, and smooth and algebraic representations. Part 1 culminates with the duality between Banach space representations and Iwasawa modules. This duality is applied in Part 2 for studying the intertwining operators and reducibility of the continuous principal series on p-adic Banach spaces.
This monograph is intended to serve both as a reference book and as an introductory text for graduate students and researchers entering the area.