logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Pandas For Everyone Python Data Analysis 2nd Edition Daniel Y Chen

  • SKU: BELL-53016604
Pandas For Everyone Python Data Analysis 2nd Edition Daniel Y Chen
$ 31.00 $ 45.00 (-31%)

4.0

6 reviews

Pandas For Everyone Python Data Analysis 2nd Edition Daniel Y Chen instant download after payment.

Publisher: Addison-Wesley Professional
File Extension: PDF
File size: 75.39 MB
Author: Daniel Y. Chen
ISBN: 9780137891146, 0137891148
Language: English
Year: 2022

Product desciption

Pandas For Everyone Python Data Analysis 2nd Edition Daniel Y Chen by Daniel Y. Chen 9780137891146, 0137891148 instant download after payment.

Manage and Automate Data Analysis with Pandas in Python

Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets.

Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if youre new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set.

New features to the second edition include:

  • Extended coverage of plotting and the seaborn data visualization library

  • Expanded examples and resources

  • Updated Python 3.9 code and packages coverage, including statsmodels and scikit-learn libraries

  • Online bonus material on geopandas, Dask, and creating interactive graphics with Altair

Chen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes.

Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem.

  • Work with DataFrames and Series, and import or export data

  • Create plots with matplotlib, seaborn, and pandas

  • Combine data sets and handle missing data

  • Reshape, tidy, and clean data sets so theyre easier to work with

  • Convert data types and manipulate text strings

  • Apply functions to scale data manipulations

  • Aggregate, transform, and filter large data sets with groupby

  • Leverage Pandas advanced date and time capabilities

  • Fit linear models using statsmodels and scikit-learn libraries

  • Use generalized linear modeling to fit models with different response variables

  • Compare multiple models to select the best one

  • Regularize to overcome overfitting and improve performance

  • Use clustering in unsupervised machine learning

Related Products