logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Phase Space Methods For Degenerate Quantum Gases 1st Edition Bryan J Dalton

  • SKU: BELL-4991116
Phase Space Methods For Degenerate Quantum Gases 1st Edition Bryan J Dalton
$ 31.00 $ 45.00 (-31%)

5.0

68 reviews

Phase Space Methods For Degenerate Quantum Gases 1st Edition Bryan J Dalton instant download after payment.

Publisher: Oxford University Press
File Extension: PDF
File size: 2.59 MB
Pages: 432
Author: Bryan J. Dalton, John Jeffers, Stephen M. Barnett
ISBN: 9780199562749, 0199562741
Language: English
Year: 2015
Edition: 1

Product desciption

Phase Space Methods For Degenerate Quantum Gases 1st Edition Bryan J Dalton by Bryan J. Dalton, John Jeffers, Stephen M. Barnett 9780199562749, 0199562741 instant download after payment.

Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons.
The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable quantities such as quantum correlation functions are given as phase space integrals. Finally, the phase space variables are replaced by time dependent stochastic variables satisfying Langevin stochastic equations obtained from the Fokker-Planck equation, with stochastic averages giving the measurable quantities.
Second, a quantum field approach is treated, the density operator being represented by a distribution functional of field functions which replace field annihilation, creation operators, the distribution functional satisfying a functional FPE, etc. A novel feature of this book is that the phase space variables for fermions are Grassmann variables, not c-numbers. However, we show that Grassmann distribution functions and functionals still provide equations for obtaining both analytic and numerical solutions. The book includes the necessary mathematics for Grassmann calculus and functional calculus, and detailed derivations of key results are provided.

Related Products