logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Principal Symbol Calculus On Contact Manifolds 2024th Edition Yuri Kordyukov

  • SKU: BELL-78705962
Principal Symbol Calculus On Contact Manifolds 2024th Edition Yuri Kordyukov
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Principal Symbol Calculus On Contact Manifolds 2024th Edition Yuri Kordyukov instant download after payment.

Publisher: Springer
File Extension: EPUB
File size: 14.26 MB
Pages: 167
Author: Yuri Kordyukov, Fedor Sukochev, Dmitriy Zanin
ISBN: 9783031699269, 9783031699252, 3031699262, 3031699254
Language: English
Year: 2024
Edition: 2024
Volume: 2359

Product desciption

Principal Symbol Calculus On Contact Manifolds 2024th Edition Yuri Kordyukov by Yuri Kordyukov, Fedor Sukochev, Dmitriy Zanin 9783031699269, 9783031699252, 3031699262, 3031699254 instant download after payment.

This book develops a C*-algebraic approach to the notion of principal symbol on Heisenberg groups and, using the fact that contact manifolds are locally modeled by Heisenberg groups, on compact contact manifolds. Applying abstract theorems due to Lord, Sukochev, Zanin and McDonald, a principal symbol on the Heisenberg group is introduced as a homomorphism of C*-algebras. This leads to a version of Connes’ trace theorem for Heisenberg groups, followed by a proof of the equivariant behavior of the principal symbol under Heisenberg diffeomorphisms. Using this equivariance and the authors’ globalization theorem, techniques are developed which enable further extensions to arbitrary stratified Lie groups and, as a consequence, the notion of a principal symbol on compact contact manifolds is described via a patching process. Finally, the Connes trace formula on compact contact sub-Riemannian manifolds is established and a spectrally correct version of the sub-Riemannian volume is defined (different from Popp's measure). The book is aimed at graduate students and researchers working in spectral theory, Heisenberg analysis, operator algebras and noncommutative geometry.

Related Products