logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Probability Theory An Analytic View 2ed Stroock Dw

  • SKU: BELL-2047954
Probability Theory An Analytic View 2ed Stroock Dw
$ 31.00 $ 45.00 (-31%)

4.7

86 reviews

Probability Theory An Analytic View 2ed Stroock Dw instant download after payment.

Publisher: CUP
File Extension: PDF
File size: 4.3 MB
Pages: 551
Author: Stroock D.W.
ISBN: 9780521132503, 0521132509
Language: English
Year: 2010
Edition: 2ed

Product desciption

Probability Theory An Analytic View 2ed Stroock Dw by Stroock D.w. 9780521132503, 0521132509 instant download after payment.

This second edition of Daniel W. Stroock's text is suitable for first-year graduate students with a good grasp of introductory, undergraduate probability theory and a sound grounding in analysis. It is intended to provide readers with an introduction to probability theory and the analytic ideas and tools on which the modern theory relies. It includes more than 750 exercises. Much of the content has undergone significant revision. In particular, the treatment of Levy processes has been rewritten, and a detailed account of Gaussian measures on a Banach space is given. The first part of the book deals with independent random variables, Central Limit phenomena, and the construction of Levy processes, including Brownian motion. Conditioning is developed and applied to discrete parameter martingales in Chapter 5, Chapter 6 contains the ergodic theorem and Burkholder's inequality, and continuous parameter martingales are discussed in Chapter 7. Chapter 8 is devoted to Gaussian measures on a Banach space, where they are treated from the abstract Wiener space perspective. The abstract theory of weak convergence is developed in Chapter 9, which ends with a proof of Donsker's Invariance Principle. The concluding two chapters contain applications of Brownian motion to the analysis of partial differential equations and potential theory.

Related Products