logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Probing Nonequilibrium Topological Order On A Quantum Processor M Will

  • SKU: BELL-239003456
Probing Nonequilibrium Topological Order On A Quantum Processor M Will
$ 35.00 $ 45.00 (-22%)

5.0

38 reviews

Probing Nonequilibrium Topological Order On A Quantum Processor M Will instant download after payment.

Publisher: Nature
File Extension: PDF
File size: 21.42 MB
Pages: 21
Author: M. Will, T. A. Cochran, E. Rosenberg, B. Jobst, N. M. Eassa, P. Roushan, M. Knap, A. Gammon-Smith, F. Pollmann
ISBN: 10.1038/S41586-025-09456-3
Language: English
Year: 2025

Product desciption

Probing Nonequilibrium Topological Order On A Quantum Processor M Will by M. Will, T. A. Cochran, E. Rosenberg, B. Jobst, N. M. Eassa, P. Roushan, M. Knap, A. Gammon-smith, F. Pollmann 10.1038/S41586-025-09456-3 instant download after payment.

Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter—they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems 1–5 , which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state theoretically proposed in ref. 6, on an array of superconducting qubits. We image the characteristic dynamics of its chiral edge modes and characterize its emergent anyonic excitations. Devising an interferometric algorithm allows us to introduce and measure a bulk topological invariant to probe the dynamical transmutation of anyons for system sizes up to 58 qubits. Our work demonstrates that quantum processors can provide key insights into the thus-far largely unexplored landscape of highly entangled non-equilibrium phases of matter.