logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Python Data Science Essentials 3rd Edition 3rd Luca Massaron

  • SKU: BELL-44583104
Python Data Science Essentials 3rd Edition 3rd Luca Massaron
$ 31.00 $ 45.00 (-31%)

4.0

56 reviews

Python Data Science Essentials 3rd Edition 3rd Luca Massaron instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 6.63 MB
Pages: 474
Author: Luca Massaron, Alberto Boschetti
ISBN: 9781789537864, 178953786X
Language: English
Year: 2018
Edition: 3rd

Product desciption

Python Data Science Essentials 3rd Edition 3rd Luca Massaron by Luca Massaron, Alberto Boschetti 9781789537864, 178953786X instant download after payment.

Gain useful insights from your data using popular data science tools Key Features A one-stop guide to Python libraries such as pandas and NumPy Comprehensive coverage of data science operations such as data cleaning and data manipulation Choose scalable learning algorithms for your data science tasks Book Description Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You'll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users What you will learn Set up your data science toolbox on Windows, Mac, and Linux Use the core machine learning methods offered by the scikit-learn library Manipulate, fix, and explore data to solve data science problems Learn advanced explorative and manipulative techniques to solve data operations Optimize your machine learning models for optimized performance Explore and cluster graphs, taking advantage of interconnections and links in your data Who this book is for If you're a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.

Related Products