logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Python Deep Learning Next Generation Techniques To Revolutionize Computer Vision Ai Speech And Data Analysis Gianmario Spacagna

  • SKU: BELL-11380888
Python Deep Learning Next Generation Techniques To Revolutionize Computer Vision Ai Speech And Data Analysis Gianmario Spacagna
$ 31.00 $ 45.00 (-31%)

4.1

50 reviews

Python Deep Learning Next Generation Techniques To Revolutionize Computer Vision Ai Speech And Data Analysis Gianmario Spacagna instant download after payment.

Publisher: Packt Publishing
File Extension: EPUB
File size: 8.41 MB
Pages: 406
Author: Gianmario Spacagna, Daniel Slater, Valentino Zocca, Peter Roelants
Language: English
Year: 2017

Product desciption

Python Deep Learning Next Generation Techniques To Revolutionize Computer Vision Ai Speech And Data Analysis Gianmario Spacagna by Gianmario Spacagna, Daniel Slater, Valentino Zocca, Peter Roelants instant download after payment.

Take your machine learning skills to the next level by mastering Deep Learning concepts and algorithms using Python.

Key Features
  • Explore and create intelligent systems using cutting-edge deep learning techniques
  • Implement deep learning algorithms and work with revolutionary libraries in Python
  • Get real-world examples and easy-to-follow tutorials on Theano, TensorFlow, H2O and more
Book Description

With an increasing interest in AI around the world, deep learning has attracted a great deal of public attention. Every day, deep learning algorithms are used broadly across different industries.

The book will give you all the practical information available on the subject, including the best practices, using real-world use cases. You will learn to recognize and extract information to increase predictive accuracy and optimize results.

Starting with a quick recap of important machine learning concepts, the book will delve straight into deep learning principles using Sci-kit learn. Moving ahead, you will learn to use the latest open source libraries such as Theano, Keras, Google's TensorFlow, and H20. Use this guide to uncover the difficulties of pattern recognition, scaling data with greater accuracy and discussing deep learning algorithms and techniques.

Whether you want to dive deeper into Deep Learning, or want to investigate how to get more out of this powerful technology, you'll find everything inside.

What You Will Learn
  • Get a practical deep dive into deep learning algorithms
  • Explore deep learning further with Theano, Caffe, Keras, and TensorFlow
  • Learn about two of the most powerful techniques at the core of many practical deep learning implementations: Auto-Encoders and Restricted Boltzmann Machines
  • Dive into Deep Belief Nets and Deep Neural Networks
  • Discover more deep learning algorithms with Dropout and Convolutional Neural Networks
  • Get to know device strategies so you can use deep learning algorithms and libraries in the real world
Who This Book Is For

This book is for Data Science practitioners as well as aspirants who have a basic foundational understanding of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired.

Table of Contents
  1. Machine Learning – An Introduction
  2. Neural Networks
  3. Deep Learning Fundamentals
  4. Unsupervised Feature Learning
  5. Image Recognition
  6. Recurrent Neural Networks and Language Models
  7. Deep Learning for Board Games
  8. Deep Learning for Computer Games
  9. Anomaly Detection
  10. Building a Production-Ready Intrusion Detection System

Related Products