logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Python Natural Language Processing Jalaj Thanaki

  • SKU: BELL-6724578
Python Natural Language Processing Jalaj Thanaki
$ 31.00 $ 45.00 (-31%)

5.0

100 reviews

Python Natural Language Processing Jalaj Thanaki instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 14.82 MB
Pages: 486
Author: Jalaj Thanaki
ISBN: 9781787121423, 1787121429
Language: English
Year: 2017

Product desciption

Python Natural Language Processing Jalaj Thanaki by Jalaj Thanaki 9781787121423, 1787121429 instant download after payment.

Key Features
  • Implement Machine Learning and Deep Learning techniques for efficient natural language processing
  • Get started with NLTK and implement NLP in your applications with ease
  • Understand and interpret human languages with the power of text analysis via Python
Book Description

This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them.

During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis.

You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data.

By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world.

What you will learn
  • Focus on Python programming paradigms, which are used to develop NLP applications
  • Understand corpus analysis and different types of data attribute.
  • Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on
  • Learn about Features Extraction and Feature selection as part of Features Engineering.
  • Explore the advantages of vectorization in Deep Learning.
  • Get a better understanding of the architecture of a rule-based system.
  • Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems.
  • Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems.
About the Author

Jalaj Thanaki is a data scientist by profession and data science researcher by practice. She likes to deal with data science related problems. She wants to make the world a better place using data science and artificial intelligence related technologies. Her research interest lies in natural language processing, machine learning, deep learning, and big data analytics. Besides being a data scientist, Jalaj is also a social activist, traveler, and nature-lover.

Table of Contents
  1. Introduction
  2. Practical understanding of corpus and data set
  3. Understanding Structure of Sentences
  4. Preprocessing
  5. Feature Engineering and NLP Algorithms
  6. Advance Feature Engineering and NLP Algorithms
  7. Rule-Based System for NLP
  8. Machine Learning for NLP Problems
  9. Deep Learning for NLU and NLG Problems
  10. Appendix A
  11. Appendix B
  12. Appendix C

Related Products