Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.4
32 reviewsThis thesis sheds new light on the worldwide first electrical manipulation of a single nuclear spin. Over the last four decades, the size of a bit, the smallest logical unit in a computer, has decreased by more than two orders of magnitude and will soon reach a limit where quantum phenomena become important. Inspired by the power of quantum mechanics, researchers have already identified pure quantum systems, having, analog to a classical bit, two controllable and readable states. In this regard, the inherent spin of electrons or nuclei with its two eigenstates, spin up and spin down, is a promising candidate. Using expertise in the field of single-molecule magnets, the author developed a molecular transistor, which allows quantum information to be written onto a single nuclear spin by means of an electric field only, and, in addition, enables the electronic read-out of this quantum state. This novel approach opens a path to addressing and manipulating individual nuclear spins within a very confined space (a single molecule), at high speed. Thus, the author was able to show that single molecule magnets are promising candidates for quantum information processing, which is triggering a new field of research towards molecular quantum electronics.