logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Responsible Data Science Grant Fleming Peter C Bruce

  • SKU: BELL-26081730
Responsible Data Science Grant Fleming Peter C Bruce
$ 31.00 $ 45.00 (-31%)

4.4

72 reviews

Responsible Data Science Grant Fleming Peter C Bruce instant download after payment.

Publisher: Wiley
File Extension: PDF
File size: 7.48 MB
Pages: 300
Author: Grant Fleming; Peter C. Bruce
ISBN: 9781119741756, 1119741750
Language: English
Year: 2021

Product desciption

Responsible Data Science Grant Fleming Peter C Bruce by Grant Fleming; Peter C. Bruce 9781119741756, 1119741750 instant download after payment.

This is the first book on ethical data science that provides hand-on practical technical steps practitioners and managers can take to fix the ethical and fairness issues arising from large data sets in data science. The book sets the stage with a review of the types of ethical challenges posed by the increasing use of data science methods to make decisions previously made by humans. Some of the topics covered include: Types of ethical challenges posed by data science including overtly bad examples like the Chinese modification of the credit score as "social worth" as well as grey areas such as increase surveillance from law enforcement through consumer devices (Ring, Alexa, Nest). Behavior manipulation (Cambridge Analytica) and deepfakes as well as unintentionally bad consequences such as mortgage discrimination and biased cash bail systems Review of “black box” models and how their usage can aggravate issues of model transparency, bias, and fairness Approaches for making black box models interpretable and identifying issues of bias or fairness Using statistical methods to analyze the effects of models and mitigate bias The book will describe interesting real cases in focused, readable and practical terms suitable both for managers with some technical ability, and for practitioners, steps to address key ethical issues in data science.

Related Products