logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Safety Factor Profile Control In A Tokamak 1st Edition Federico Bribiesca Argomedo

  • SKU: BELL-4503096
Safety Factor Profile Control In A Tokamak 1st Edition Federico Bribiesca Argomedo
$ 31.00 $ 45.00 (-31%)

5.0

58 reviews

Safety Factor Profile Control In A Tokamak 1st Edition Federico Bribiesca Argomedo instant download after payment.

Publisher: Springer International Publishing
File Extension: PDF
File size: 3.65 MB
Pages: 96
Author: Federico Bribiesca Argomedo, Emmanuel Witrant, Christophe Prieur (auth.)
ISBN: 9783319019574, 9783319019581, 3319019570, 3319019589
Language: English
Year: 2014
Edition: 1

Product desciption

Safety Factor Profile Control In A Tokamak 1st Edition Federico Bribiesca Argomedo by Federico Bribiesca Argomedo, Emmanuel Witrant, Christophe Prieur (auth.) 9783319019574, 9783319019581, 3319019570, 3319019589 instant download after payment.

Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium.

Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs).

The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The text then tackles the construction of an input-to-state-stability Lyapunov function for the infinite-dimensional system that handles the medium anisotropy and provides a common basis for analytical robustness results. This function is used as a control-Lyapunov function and allows the amplitude and nonlinear shape constraints in the control action to be dealt with.

Finally, the Brief addresses important application- and implementation-specific concerns. In particular, the coupling of the PDE and the finite-dimensional subsystem representing the evolution of the boundary condition (magnetic coils) and the introduction of profile-reconstruction delays in the control loop (induced by solving a 2-D inverse problem for computing the magnetic flux) is analyzed. Simulation results are presented for various operation scenarios on Tore Supra (simulated with METIS) and on TCV (simulated with RAPTOR).

Control of the Safety Factor Profile in a Tokamak will be of interest to both academic and industrially-based researchers interested in nuclear energy and plasma-containment control systems, and graduate students in nuclear and control engineering.

Related Products