logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Scientific Computing With Python Highperformance Scientific Computing With Numpy Scipy And Pandas 2nd Edition Claus Fuhrer Jan Erik Solem Olivier Verdier

  • SKU: BELL-33789050
Scientific Computing With Python Highperformance Scientific Computing With Numpy Scipy And Pandas 2nd Edition Claus Fuhrer Jan Erik Solem Olivier Verdier
$ 31.00 $ 45.00 (-31%)

4.4

32 reviews

Scientific Computing With Python Highperformance Scientific Computing With Numpy Scipy And Pandas 2nd Edition Claus Fuhrer Jan Erik Solem Olivier Verdier instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 27.65 MB
Pages: 392
Author: Claus Fuhrer; Jan Erik Solem; Olivier Verdier
ISBN: 9781838822323, 9781838825102, 1838822321, 183882510X
Language: English
Year: 2021
Edition: 2

Product desciption

Scientific Computing With Python Highperformance Scientific Computing With Numpy Scipy And Pandas 2nd Edition Claus Fuhrer Jan Erik Solem Olivier Verdier by Claus Fuhrer; Jan Erik Solem; Olivier Verdier 9781838822323, 9781838825102, 1838822321, 183882510X instant download after payment.

Leverage this example-packed, comprehensive guide for all your Python computational needs Key Features Learn the first steps within Python to highly specialized concepts Explore examples and code snippets taken from typical programming situations within scientific computing. Delve into essential computer science concepts like iterating, object-oriented programming, testing, and MPI presented in strong connection to applications within scientific computing. Book Description Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing. What you will learn Understand the building blocks of computational mathematics, linear algebra, and related Python objects Use Matplotlib to create high-quality figures and graphics to draw and visualize results Apply object-oriented programming (OOP) to scientific computing in Python Discover how to use pandas to enter the world of data processing Handle exceptions for writing reliable and usable code Cover manual and automatic aspects of testing for scientific programming Get to grips with parallel computing to increase computation speed Who this book is for This book is for students with a mathematical background, university teachers designing modern courses in programming, data scientists, researchers, developers, and anyone who wants to perform scientific computation in Python.

Related Products