logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Semigroups In Geometrical Function Theory 1st Edition D Shoikhet

  • SKU: BELL-2346358
Semigroups In Geometrical Function Theory 1st Edition D Shoikhet
$ 31.00 $ 45.00 (-31%)

5.0

90 reviews

Semigroups In Geometrical Function Theory 1st Edition D Shoikhet instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 12.53 MB
Pages: 233
Author: D. Shoikhet
ISBN: 9780792371113, 0792371119
Language: English
Year: 2001
Edition: 1

Product desciption

Semigroups In Geometrical Function Theory 1st Edition D Shoikhet by D. Shoikhet 9780792371113, 0792371119 instant download after payment.

This manuscript provides an introduction to the generation theory of nonlinear one-parameter semigroups on a domain of the complex plane in the spirit of the Wolff-Denjoy and Hille-Yoshida theories. Special attention is given to evolution equations reproduced by holomorphic vector fields on the unit disk. A dynamic approach to the study of geometrical properties of univalent functions is emphasized. The book comprises six chapters. The preliminary chapter and chapter 1 give expositions to the theory of functions in the complex plane, and the iteration theory of holomorphic mappings according to Wolff and Denjoy, as well as to Julia and Caratheodory. Chapter 2 deals with elementary hyperbolic geometry on the unit disk, and fixed points of those mappings which are nonexpansive with respect to the Poincar? metric. Chapters 3 and 4 study local and global characteristics of holomorphic and hyperbolically monotone vector-fields, which yield a global description of asymptotic behavior of generated flows. Various boundary and interior flow invariance conditions for such vector-fields and their parametric representations are presented. Applications to univalent starlike and spirallike functions on the unit disk are given in Chapter 5. The approach described may also be useful for higher dimensions. Audience: The book will be of interest to graduate students and research specialists working in the fields of geometrical function theory, iteration theory, fixed point theory, semigroup theory, theory of composition operators and complex dynamical systems.

Related Products