Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.7
76 reviewsAfterasurveypaperbyUtkininthelate1970s,slidingmodecontrolmeth- ologies emerged as an e?ective tool to tackle uncertainty and disturbances which are inevitable in most of the practical systems. Sliding mode control is a particular class of variable structure control which was introduced by Emel’yanov and his colleagues. The design paradigms of sliding mode c- trol has now become a mature design technique for the design of robust c- troller of uncertain system. In sliding mode technique, the state trajectory of the system is constrained on a chosen manifold (or within some neighb- hood thereof) by an appropriatecontrolaction. This manifold is also called a switching surface or a sliding surface. During sliding mode, system dynamics is governed by the chosen manifold which results in a well celebrated inva- ance property towards certain classes of disturbance and model mismatches. The purpose of this monograph is to give a di?erent dimension to sl- ing surface design to achieve high performance of the system. Design of the switching surface is vital because the closed loop dynamics is governed by the parameters of the sliding surface. Therefore sliding surface should be - signed to meet the closed loop speci?cations. Many systems demand high performance with robustness. To address this issue of achieving high perf- mance with robustness, we propose nonlinear surfaces for di?erent classes of systems. The nonlinear surface is designed such that it changes the system’s closed-loop damping ratio from its initial low value to a ?nal high value.