logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Social Web Anonymous

  • SKU: BELL-4717334
Social Web Anonymous
$ 31.00 $ 45.00 (-31%)

4.7

76 reviews

Social Web Anonymous instant download after payment.

Publisher: Wikibooks.org
File Extension: PDF
File size: 2.64 MB
Pages: 122
Author: Anonymous
Language: English
Year: 2013

Product desciption

Social Web Anonymous by Anonymous instant download after payment.

How can you tap into the wealth of social web data to discover who’s making connections with whom, what they’re talking about, and where they’re located? With this expanded and thoroughly revised edition, you’ll learn how to acquire, analyze, and summarize data from all corners of the social web, including Facebook, Twitter, LinkedIn, Google+, GitHub, email, websites, and blogs. Employ the Natural Language Toolkit, NetworkX, and other scientific computing tools to mine popular social web sites Apply advanced text-mining techniques, such as clustering and TF-IDF, to extract meaning from human language data Bootstrap interest graphs from GitHub by discovering affinities among people, programming languages, and coding projects Build interactive visualizations with D3.js, an extraordinarily flexible HTML5 and JavaScript toolkit Take advantage of more than two-dozen Twitter recipes, presented in O’Reilly’s popular "problem/solution/discussion" cookbook format The example code for this unique data science book is maintained in a public GitHub repository. It’s designed to be easily accessible through a turnkey virtual machine that facilitates interactive learning with an easy-to-use collection of IPython Notebooks.ReviewMining the social web, again When we first published Mining the Social Web, I thought it was one of the most important books I worked on that year. Now that we’re publishing a second edition (which I didn’t work on), I find that I agree with myself. With this new edition, Mining the Social Web is more important than ever.While we’re seeing more and more cynicism about the value of data, and particularly “big data,” that cynicism isn’t shared by most people who actually work with data. Data has undoubtedly been overhyped and oversold, but the best way to arm yourself against the hype machine is to start working with data yourself, to find out what you can and can’t learn. And there’s no shortage of data around. Everything we do leaves a cloud of data behind it: Twitter, Facebook, Google+ — to say nothing of the thousands of other social sites out there, such as Pinterest, Yelp, Foursquare, you name it. Google is doing a great job of mining your data for value. Why shouldn’t you? There are few better ways to learn about mining social data than by starting with Twitter; Twitter is really a ready-made laboratory for the new data scientist. And this book is without a doubt the best and most thorough approach to mining Twitter data out there. But that’s only a starting point. We hear a lot in the press about sentiment analysis and mining unstructured text data; this book shows you how to do it. If you need to mine the data in web pages or email archives, this book shows you how. And if you want to understand how to people collaborate on projects, Mining the Social Web is the only place I’ve seen that analyzes GitHub data. All of the examples in the book are available on Github. In addition to the example code, which is bundled into IPython notebooks, Matthew has provided a VirtualBox VM that installs Python, all the libraries you need to run the examples, the examples themselves, and an IPython server. Checking out the examples is as simple as installing Virtual Box, installing Vagrant, cloning the 2nd edition’s Github archive, and typing “vagrant up.”  You can execute the examples for yourself in the virtual machine; modify them; and use the virtual machine for your own projects, since it’s a fully functional Linux system with Python, Java, MongoDB, and other necessities pre-installed. You can view this as a book with accompanying examples in a particularly nice package, or you can view the book as “premium support” for an open source project that consists of the examples and the VM.If you want to engage with the data that’s surrounding you, Mining the Social Web is the best place to start. Use it to learn, to experiment, and to build your own data projects.-- Mike LoukidesVice President of Content Strategy for O'Reilly Media, Inc.Book DescriptionData Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More [C:\Users\Microsoft\Documents\Calibre Library]

Related Products