logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Statistical Rethinking A Bayesian Course With Examples In R And Stan 2nd Edition Richard Mcelreath

  • SKU: BELL-11116672
Statistical Rethinking A Bayesian Course With Examples In R And Stan 2nd Edition Richard Mcelreath
$ 31.00 $ 45.00 (-31%)

4.8

44 reviews

Statistical Rethinking A Bayesian Course With Examples In R And Stan 2nd Edition Richard Mcelreath instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 23.64 MB
Author: Richard McElreath
ISBN: 9780367139919, 036713991X
Language: English
Year: 2020
Edition: 2

Product desciption

Statistical Rethinking A Bayesian Course With Examples In R And Stan 2nd Edition Richard Mcelreath by Richard Mcelreath 9780367139919, 036713991X instant download after payment.

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.
The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.
The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses.
Features
Integrates working code into the main text
Illustrates concepts through worked data analysis examples
Emphasizes understanding assumptions and how assumptions are reflected in code
Offers more detailed explanations of the mathematics in optional sections
Presents examples of using the dagitty R package to analyze causal graphs
Provides the rethinking R package on the author's website and on GitHub

Related Products