Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
5.0
48 reviewsThe authors illustrate the relevant Markov chain theory using realistic models from systems biology including signaling and metabolic pathways, phosphorylation processes, genetic switches, and transcription. A central part of the book presents an original and up-to-date treatment of cooperativity. The book defines classical indexes, such as the Hill coefficient, using notions from statistical mechanics, it explains why binding curves often have S-shapes and why cooperative behaviors can lead to ultrasensitive genetic switches. These notions are then used to model transcription rates. Examples cover the phage lambda genetic switch and eukaryotic gene expression. --
The book then presents a short course on dynamical systems and describes stochastic aspects of linear noise approximation. This mathematical framework enables the simplification of complex stochastic dynamics using Gaussian processes and nonlinear ODEs. Simple examples illustrate the technique in noise propagation in gene networks and the effects of network structures on multistability and gene expression noise levels. The last chapter provides up-to-date results on stochastic and deterministic mass action kinetics with applications to enzymatic biochemical reactions and metabolic pathways. --Book Jacket.
The authors illustrate the relevant Markov chain theory using realistic models from systems biology including signaling and metabolic pathways, phosphorylation processes, genetic switches, and transcription. A central part of the book presents an original and up-to-date treatment of cooperativity. The book defines classical indexes, such as the Hill coefficient, using notions from statistical mechanics, it explains why binding curves often have S-shapes and why cooperative behaviors can lead to ultrasensitive genetic switches. These notions are then used to model transcription rates. Examples cover the phage lambda genetic switch and eukaryotic gene expression. --
The book then presents a short course on dynamical systems and describes stochastic aspects of linear noise approximation. This mathematical framework enables the simplification of complex stochastic dynamics using Gaussian processes and nonlinear ODEs. Simple examples illustrate the technique in noise propagation in gene networks and the effects of network structures on multistability and gene expression noise levels. The last chapter provides up-to-date results on stochastic and deterministic mass action kinetics with applications to enzymatic biochemical reactions and metabolic pathways. --Book Jacket