logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Structural Equation Modeling A Bayesian Approach 1st Edition Sikyum Lee

  • SKU: BELL-993226
Structural Equation Modeling A Bayesian Approach 1st Edition Sikyum Lee
$ 31.00 $ 45.00 (-31%)

4.3

18 reviews

Structural Equation Modeling A Bayesian Approach 1st Edition Sikyum Lee instant download after payment.

Publisher: Wiley
File Extension: PDF
File size: 8.47 MB
Pages: 460
Author: Sik-Yum Lee
ISBN: 9780470024232, 0470024232
Language: English
Year: 2007
Edition: 1

Product desciption

Structural Equation Modeling A Bayesian Approach 1st Edition Sikyum Lee by Sik-yum Lee 9780470024232, 0470024232 instant download after payment.

Structural equation modeling (SEM) is a powerful multivariate method allowing the evaluation of a series of simultaneous hypotheses about the impacts of latent and manifest variables on other variables, taking measurement errors into account. As SEMs have grown in popularity in recent years, new models and statistical methods have been developed for more accurate analysis of more complex data. A Bayesian approach to SEMs allows the use of prior information resulting in improved parameter estimates, latent variable estimates, and statistics for model comparison, as well as offering more reliable results for smaller samples.Structural Equation Modeling introduces the Bayesian approach to SEMs, including the selection of prior distributions and data augmentation, and offers an overview of the subject's recent advances. * Demonstrates how to utilize powerful statistical computing tools, including the Gibbs sampler, the Metropolis-Hasting algorithm, bridge sampling and path sampling to obtain the Bayesian results. * Discusses the Bayes factor and Deviance Information Criterion (DIC) for model comparison. * Includes coverage of complex models, including SEMs with ordered categorical variables, and dichotomous variables, nonlinear SEMs, two-level SEMs, multisample SEMs, mixtures of SEMs, SEMs with missing data, SEMs with variables from an exponential family of distributions, and some of their combinations. * Illustrates the methodology through simulation studies and examples with real data from business management, education, psychology, public health and sociology. * Demonstrates the application of the freely available software WinBUGS via asupplementary website featuring computer code and data sets. Structural Equation Modeling: A Bayesian Approach is a multi-disciplinary text ideal for researchers and students in many areas, including: statistics, biostatistics, business, education, medicine, psychology, public health and social science.

Related Products