logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Structure And Dynamics Of Confined Polymers 1st Edition Edmund A Dimarzio Auth

  • SKU: BELL-4206938
Structure And Dynamics Of Confined Polymers 1st Edition Edmund A Dimarzio Auth
$ 31.00 $ 45.00 (-31%)

5.0

80 reviews

Structure And Dynamics Of Confined Polymers 1st Edition Edmund A Dimarzio Auth instant download after payment.

Publisher: Springer Netherlands
File Extension: PDF
File size: 17.98 MB
Pages: 390
Author: Edmund A. DiMarzio (auth.), John J. Kasianowicz, Miklós S. Z. Kellermayer, David W. Deamer (eds.)
ISBN: 9781402006982, 9789401004015, 1402006985, 9401004013
Language: English
Year: 2002
Edition: 1

Product desciption

Structure And Dynamics Of Confined Polymers 1st Edition Edmund A Dimarzio Auth by Edmund A. Dimarzio (auth.), John J. Kasianowicz, Miklós S. Z. Kellermayer, David W. Deamer (eds.) 9781402006982, 9789401004015, 1402006985, 9401004013 instant download after payment.

Polymers are essential to biology because they can have enough stable degrees of freedom to store the molecular code of heredity and to express the sequences needed to manufacture new molecules. Through these they perform or control virtually every function in life. Although some biopolymers are created and spend their entire career in the relatively large free space inside cells or organelles, many biopolymers must migrate through a narrow passageway to get to their targeted destination. This suggests the questions: How does confining a polymer affect its behavior and function? What does that tell us about the interactions between the monomers that comprise the polymer and the molecules that confine it? Can we design and build devices that mimic the functions of these nanoscale systems? The NATO Advanced Research Workshop brought together for four days in Bikal, Hungary over forty experts in experimental and theoretical biophysics, molecular biology, biophysical chemistry, and biochemistry interested in these questions. Their papers collected in this book provide insight on biological processes involving confinement and form a basis for new biotechnological applications using polymers. In his paper Edmund DiMarzio asks: What is so special about polymers? Why are polymers so prevalent in living things? The chemist says the reason is that a protein made of N amino acids can have any of 20 different kinds at each position along the chain, resulting in 20 N different polymers, and that the complexity of life lies in this variety.

Related Products