Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
5.0
60 reviewsThis work constitutes a detailed study of electrical and magnetic properties in nanometric materials with a range of scales: atomic-sized nanoconstrictions, micro- and nanowires and thin films. Firstly, a novel method of fabricating atomic-sized constrictions in metals is presented; it relies on measuring the conduction of the device while a focused-ion-beam etching process is in progress. Secondly, it describes wires created by a very promising nanolithography technique: Focused electron/ion-beam-induced deposition. Three different gas precursors were used: (CH₃)₃Pt(CpCH₃), W(CO)₆ and Co₂(CO)₈. The thesis reports the results obtained for various physical phenomena: the metal-insulator transition, superconducting and magnetic properties, respectively. Finally, the detailed magnetotransport properties in epitaxial Fe₃O₄ thin films grown on MgO (001) are presented. Overall, the new approaches developed in this thesis have great potential for supporting novel technologies.