logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Support Vector Machines Evolution And Applications Pooja Saigal

  • SKU: BELL-51228438
Support Vector Machines Evolution And Applications Pooja Saigal
$ 31.00 $ 45.00 (-31%)

5.0

30 reviews

Support Vector Machines Evolution And Applications Pooja Saigal instant download after payment.

Publisher: Nova Science Publishers
File Extension: PDF
File size: 2.9 MB
Pages: 245
Author: Pooja Saigal
ISBN: 9781536188653, 1536188654
Language: English
Year: 2021

Product desciption

Support Vector Machines Evolution And Applications Pooja Saigal by Pooja Saigal 9781536188653, 1536188654 instant download after payment.

"Support Vector Machines: Evolution and Applications reviews the basics of Support Vector Machines (SVM), their evolution and applications in diverse fields. SVM is an efficient supervised learning approach popularly used for pattern recognition, medical image classification, face recognition and various other applications. In the last 25 years, a lot of research has been carried out to extend the use of SVM to a variety of domains. This book is an attempt to present the description of a conventional SVM, along with discussion of its different versions and recent application areas. The first chapter of this book introduces SVM and presents the optimization problems for a conventional SVM. Another chapter discusses the journey of SVM over a period of more than two decades. SVM is proposed as a separating hyperplane classifier that partitions the data belonging to two classes. Later on, various versions of SVM are proposed that obtain two hyperplanes instead of one. A few of these variants of SVM are discussed in this book. The major part of this book discusses some interesting applications of SVM in areas like quantitative diagnosis of rotor vibration process faults through power spectrum entropy-based SVM, hardware architectures of SVM applied in pattern recognition systems, speaker recognition using SVM, classification of iron ore in mines and simultaneous prediction of the density and viscosity for the ternary system water- ethanol-ethylene glycol ionic liquids. The latter part of the book is dedicated to various approaches for the extension of SVM and similar classifiers to a multi-category framework, so that they can be used for the classification of data with more than two classes"--

Related Products