Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
5.0
108 reviewsThis book presents a systematic overview of cutting-edge research in the field of parametric modeling of personal income and wealth distribution, which allows one to represent how income/wealth is distributed within a given population. The estimated parameters may be used to gain insights into the causes of the evolution of income/wealth distribution over time, or to interpret the differences between distributions across countries. Moreover, once a given parametric model has been fitted to a data set, one can straightforwardly compute inequality and poverty measures. Finally, estimated parameters may be used in empirical modeling of the impact of macroeconomic conditions on the evolution of personal income/wealth distribution. In reviewing the state of the art in the field, the authors provide a thorough discussion of parametric models belonging to the “κ-generalized” family, a new and fruitful set of statistical models for the size distribution of income and wealth that they have developed over several years of collaborative and multidisciplinary research. This book will be of interest to all who share the belief that problems of income and wealth distribution merit detailed conceptual and methodological attention.