Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.4
22 reviewsEnvironmentally compatible polymers (green polymers) are the key to sustainable developments for our rich and convenient life. In order to develop green polymers, it is essential to understand that nature constructs a variety of materials that can be used. Plant materials such as cellulose, hemicellulose and lignin are the largest organic resources.
Thermal Properties of Green Polymers and Biocomposites is unique in that it introduces thermal analysis applicable to green polymers and provides fundamental thermal properties of cellulose, polysaccharides and lignin. The book includes over 370 figures concerning thermal properties of green polymers with detailed experimental conditions. It also introduces newly patented environmentally compatible green polymers. Thermal properties provided include: thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), thermomechanometry (TMA) and dynamic mechanical analysis (DMA).
This book covers two domains:
-Fundamentals of thermal properties of cellulose, polysaccharides and lignin (Chapters 3 to 5);
-Developments of new biocompatible polymers derived from plant materials (Chapters 6 to 8).
This book is aimed at advanced users and specialists who are interested in green polymers and who utilize thermal analyses for the above polymers, especially in research laboratories, both academic and industrial.