logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Thin Film Transistor Rayhua Horng

  • SKU: BELL-55252108
Thin Film Transistor Rayhua Horng
$ 31.00 $ 45.00 (-31%)

4.1

60 reviews

Thin Film Transistor Rayhua Horng instant download after payment.

Publisher: MDPI
File Extension: PDF
File size: 15.28 MB
Pages: 108
Author: Ray-Hua Horng
ISBN: 9783039215270, 3039215272
Language: English
Year: 2019

Product desciption

Thin Film Transistor Rayhua Horng by Ray-hua Horng 9783039215270, 3039215272 instant download after payment.

Recently, new wide-band energy gap semiconductors can be grown by ALD, PLD, sputtering, or MOCVD. They have great potential for the fabrication and application to TFTs. Inorganic semiconductors have good stability against environmental degradation over their organic counterparts, whereas organic materials are usually flexible, transparent, and when solution-processed at low temperatures, are prone to degradation when exposed to heat, moisture, and oxygen. For this Special Issue, we invited researchers to submit papers discussing the development of new functional and smart materials, and inorganic as well as organic semiconductor materials, such as ZnO, InZnO, GaO, AlGaO, AnGaO, AlN/GaN, conducting polymers, molecular semiconductors, perovskite-based materials, carbon nanotubes, carbon nanotubes/polymer composites, and 2D materials (e.g., graphene, MoS2) and their potential applications in display drivers, radio frequency identification tags, e-paper, gas, chemical and biosensors, to name but a few.

Related Products