logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Thin Liquid Films Dewetting And Polymer Flow 1st Edition Ralf Blossey Auth

  • SKU: BELL-4205666
Thin Liquid Films Dewetting And Polymer Flow 1st Edition Ralf Blossey Auth
$ 31.00 $ 45.00 (-31%)

4.3

38 reviews

Thin Liquid Films Dewetting And Polymer Flow 1st Edition Ralf Blossey Auth instant download after payment.

Publisher: Springer Netherlands
File Extension: PDF
File size: 2.91 MB
Pages: 154
Author: Ralf Blossey (auth.)
ISBN: 9789400744547, 9789400744554, 9400744544, 9400744552
Language: English
Year: 2012
Edition: 1

Product desciption

Thin Liquid Films Dewetting And Polymer Flow 1st Edition Ralf Blossey Auth by Ralf Blossey (auth.) 9789400744547, 9789400744554, 9400744544, 9400744552 instant download after payment.

This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films (sometimes referred to as “ultrathin”) have proven to be an invaluable experimental model system.
What is it that makes thin film instabilities special and interesting? First, thin polymeric films have an important range of applications. An understanding of their instabilities is therefore of practical relevance for the design of such films. The first chapter of the book intends to give a snapshot of current applications, and an outlook on promising future ones. Second, thin liquid films are an interdisciplinary research topic, which leads to a fairly heterogeneous community working on the topic. It justifies attempting to write a text which gives a coherent presentation of the field which researchers across their specialized communities might be interested in. Finally, thin liquid films are an interesting laboratory for a theorist to confront a well-established theory, hydrodynamics, with its limits. Thin films are therefore a field in which a highly fruitful exchange and collaboration exists between experimentalists and theorists.
The book stretches from the more concrete to more abstract levels of study: we roughly progress from applications via theory and experiment to rigorous mathematical theory. For an experimental scientist, the book should serve as a reference and guide to what is the current consensus of the theoretical underpinnings of the field of thin film dynamics. Controversial problems on which such a consensus has not yet been reached are clearly indicated in the text, as well as discussed in a final chapter. From a theoretical point of view, the field of dewetting has mainly been treated in a mathematically ‘light’ yet elegant fashion, often making use of scaling arguments. For the untrained researcher, this approach is not always easy to follow. The present book attempts to bridge between the ‘light’ and the ‘rigorous’, always with the ambition to enhance insight and understanding - and to not let go the elegance of the theory.

Related Products