logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Time Series Analysis With Python Cookbook Practical Recipes For Exploratory Data Analysis Data Preparation Forecasting Tarek A Atwan

  • SKU: BELL-47632810
Time Series Analysis With Python Cookbook Practical Recipes For Exploratory Data Analysis Data Preparation Forecasting Tarek A Atwan
$ 31.00 $ 45.00 (-31%)

4.4

12 reviews

Time Series Analysis With Python Cookbook Practical Recipes For Exploratory Data Analysis Data Preparation Forecasting Tarek A Atwan instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 38.05 MB
Pages: 630
Author: Tarek A. Atwan
ISBN: 9781801075541, 1801075549
Language: English
Year: 2022

Product desciption

Time Series Analysis With Python Cookbook Practical Recipes For Exploratory Data Analysis Data Preparation Forecasting Tarek A Atwan by Tarek A. Atwan 9781801075541, 1801075549 instant download after payment.

Perform time series analysis and forecasting confidently with this Python code bank and reference manual Key Features: Explore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithms Learn different techniques for evaluating, diagnosing, and optimizing your models Work with a variety of complex data with trends, multiple seasonal patterns, and irregularities Book Description: Time series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting. This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch. Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book. What You Will Learn: Understand what makes time series data different from other data Apply various imputation and interpolation strategies for missing data Implement different models for univariate and multivariate time series Use different deep learning libraries such as TensorFlow, Keras, and PyTorch Plot interactive time series visualizations using hvPlot Explore state-space models and the unobserved components model (UCM) Detect anomalies using statistical and machine learning methods Forecast complex time series with multiple seasonal patterns Who this book is for: This book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.

Related Products