logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Topics In Optimal Transportation Cedric Villani

  • SKU: BELL-2417740
Topics In Optimal Transportation Cedric Villani
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Topics In Optimal Transportation Cedric Villani instant download after payment.

Publisher: American Mathematical Society
File Extension: PDF
File size: 23.19 MB
Pages: 382
Author: Cedric Villani
ISBN: 9780821833124, 082183312X
Language: English
Year: 2003

Product desciption

Topics In Optimal Transportation Cedric Villani by Cedric Villani 9780821833124, 082183312X instant download after payment.

This is the first comprehensive introduction to the theory of mass transportation with its many--and sometimes unexpected--applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of "optimal transportation" (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.

Related Products