Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.0
66 reviewsThis is a nicely edited volume on Estimation of Distribution Algorithms (EDAs) by leading researchers on this important topic.
It covers a wide range of topics in EDAs, from theoretical analysis to experimental studies, from single objective to multi-objective optimisation, and from parallel EDAs to hybrid EDAs. It is a very useful book for everyone who is interested in EDAs, evolutionary computation or optimisation in general.
Xin Yao, IEEE Fellow
Editor-in-Chief, IEEE Transactions on Evolutionary Computation
______________________________________________________________
Estimation of Distribution Algorithms (EDAs) have "removed genetics"
from Evolutionary Algorithms (EAs). However, both approaches (still) have a lot in common, and, for instance, each one could be argued to in fact include the other! Nevertheless, whereas some theoretical approaches that are specific to EDAs are being proposed, many practical issues are common to both fields, and, though proposed in the mid 90's only, EDAs are catching up fast now with EAs, following many research directions that have proved successful for the latter:
opening to different search domains, hybridizing with other methods (be they OR techniques or EAs themselves!), going parallel, tackling difficult application problems, and the like.
This book proposes an up-to-date snapshot of this rapidly moving field, and witnesses its maturity. It should hence be read ... rapidly, by anyone interested in either EDAs or EAs, or more generally in stochastic optimization.
Marc Schoenauer
Editor-in-Chief, Evolutionary Computation